

Agenda

Agenda

- 1 Introduction
- 2 Data
- 3 Diversification Effects
- 4 Hedging Abilities
- 5 Conclusion and Outlook

1 Introduction

Phenomenon cryptocurrencies, esp. Bitcoin: (1) technological vs. (2) economic perspective

- (1) Payment token based on blockchain technology, decentralised and redundantly recorded, not relying on central institution
- (2) Digital commodity traded on non-institutionalised markets, no currency or money, value is originated by trust in that value
- ⇒ Bitcoin as new, original asset class for investors

More and more institutional agents accept to invest into Bitcoin

- Rising acceptance by private investors
- Regulation attempts by governments, central banks, financial supervisors
- Public extension: futures contracts, effective payment possibilities, ETFs, ...
- Large quantities of money supply at low interest rates until 2022

1 Introduction

Research questions: Is Bitcoin a meaningful digital asset?

... suitable as portfolio admixture?

... effective as a hedge to other assets?

Related literature:

(1) Technological issues: e.g. Böhme et al. (2015), Dwyer (2015), Schinckus (2020)

(2) Valuation and pricing: e.g. Schilling, Uhlig (2019), Liu et al. (2019)

(3) Market microstructure: e.g. Ghysels, Nguyen (2019), Aleti, Mizrach (2021)

Impacts on portfolio composition?

Dyhrberg (2016), Bouri *et al.* (2017), Fang *et al.* (2018) confirm hedging abilities; Klein *et al.* (2018) reject hedging capabilities of Bitcoin

Guesmi *et al.* (2019), Trimborn *et al.* (2020), Petukhia *et al.* (2021) affirm positive diversification impacts

2 Data

Daily settlement prices of German stock market index DAX (KKMDB)

Daily Euro Bitcoin prices (BTC) close to 5.45 pm MET (Bitcoin.de)

Risk free rates at one-year maturities (Deutsche Bundesbank)

Period from January 2, 2012 until December 30, 2020

Daily discontinuous returns of DAX and BTC prices

$$r_{i,t} = (p_{i,t} - p_{i,t-1})/p_{i,t-1}$$
, $i = \text{DAX, BTC}$

Summary statistics over entire sample:

	n	Mean	Median	STD	SKEW	KURT	CORR
Full sai	mple	,					4
DAX	2,275	0.045%	0.083%	1.237%	-0.461	9.329	
		(11.20%)	(20.69%)	(19.57%)			
BTC	2,275	0.469%	0.235%	3.976%	0.167	8.830	0.1046
	*	(117.2%)	(58.85%)	(62.87%)			

Risk averse investors seek for assets improving the risk-return-ratio of their portfolio (Kumar, 2009)

To be independent of assumptions on investors preferences (Elton et al., 2014):

- (1) P of DAX and BTC with same projected standard deviation like pure stock portfolio
- (2) MVP out of efficient DAX-BTC portfolios

Parameter estimates, assessed annually at t = January, 1, based on last n daily return obs.

- DAX and BTC sample mean returns $ar{r}_{ exttt{DAX},t}$ and $ar{r}_{ exttt{BTC},t}$
- Sample standard deviations of DAX and BTC returns SDAX.t and SBTC.t
- Sample correlation coefficient between DAX and BTC returns c₊

Portfolios are held to December, 31, rebuilt at same procedure etc. (no short sale constraints)

(1) Calculation of portfolio weights $w_{\text{DAX,P,}t}$ at time t by Equalling projected standard deviation of portfolio return to $s_{\text{DAX,}t}$ and solving

$$0 = (s_{\text{DAX},t}^2 + s_{\text{BTC},t}^2 - s_{\text{DAX},t} s_{\text{BTC},t} c_t) w_{\text{DAX},P,t}^2 + (s_{\text{DAX},t} s_{\text{BTC},t} c_t - 2s_{\text{BTC},t}^2) w_{\text{DAX},P,t} + s_{\text{BTC},t}^2 - s_{\text{DAX},t}^2.$$

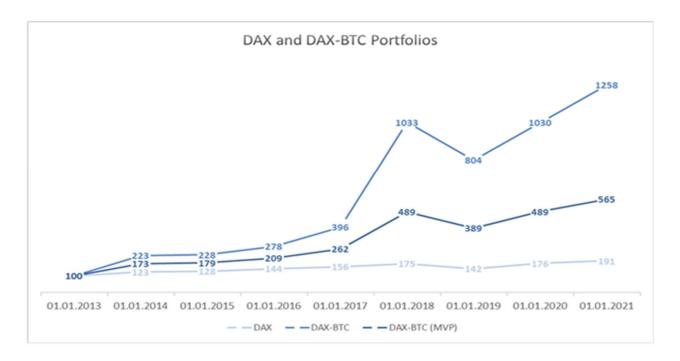
WDAXP.t	WBTC.P.t	$\mu_{p,t}$	$\sigma_{\mathrm{p,r}}$	$r_{p,t+1}$	$s_{p,t+1}$
2013					
0.7633	0.2367	49.95%	18.76%	122.69%	26.84%
2014					
0.9731	0.0269	34.77%	14.55%	2.33%	16.26%
2015			- 120 - 120 - 120	*	
0.7236	0.2764	-13.01%	16.68%	21.87%	21.25%
2016					
0.5746	0.4254	27.32%	23.44%	42.59%	18.40%
2017					
0.4509	0.5491	52.45%	20.75%	160.88%	38.11%
2018					
0.9637	0.0363	22.09%	10.58%	-22.16%	15.28%
2019					
0.9288	0.0702	-25.21%	15.46%	28.11%	13.61%
2020					
0.9022	0.0978	29.89%	13.94%	22.12%	31.34%

(2) Calculation of portfolio weights $w_{\text{DAX,MVP},t}$ at time t by Minimising equation (1)

$$w_{\text{DAX,MVP,t}} = \frac{-(s_{\text{DAX,t}}s_{\text{BTC,t}}c_t - 2s_{\text{BTC,t}}^2)}{2(s_{\text{DAX,t}}^2 + s_{\text{BTC,t}}^2 - s_{\text{DAX,t}}s_{\text{BTC,t}}c_t)}.$$

WDAXMVP.t	WBTCMVI	p.t μ _{MVP.t}	$\sigma_{\mathrm{MVp.r}}$	$r_{\text{MVP},t+1}$	$s_{\text{MVP},t+1}$
2013					
0.8817	0.1183	38.41%	17.75%	73.09%	17.96%
2014					
0.9865	0.0135	29.14%	14.48%	3.16%	16.46%
2015					
0.8618	0.1382	-4.51%	15.45%	16.82%	21.33%
2016					
0.7873	0.2127	19.54%	21.02%	25.63%	17.47%
2017					
0.7255	0.2745	30.56%	17.28%	86.57%	20.57%
2018	()			*	*
0.9818	0.0182	17.17%	10.50%	-20.52%	15.32%
2019					
0.9649	0.0351	-22.05%	15.28%	25.85%	13.57%
2020					
0.9511	0.0489	26.74%	13.54%	15.48%	31.94%

Ex post calculation of reward-to-variability-ratio


$$SM_{i,t} = \frac{r_{i,t}^* - r_{f,t-1}}{s_{i,t}^*}$$
, $i = DAX$, P, MVP,

Ex ante evaluation of Value-at-Risk for one-year time horizon and probability level p=0.99

$$VaR_{i,t}(p) = \bar{r}_{i,t} - z_p \cdot s_{i,t}$$
 $i = \text{DAX, P, MVP.}$

$SM_{DAX,t+1}$	$SM_{p,r+1}$	$SM_{MVP,t+}$	1 VaR _{DAX} r	$VaR_{p,t}$	$VaR_{MVP.1}$
2013					
1.6166	4.5727	4.0718	0.1685	0.0000	0.0293
2014					
0.2317	0.1359	0.1845	0.1040	0.0000	0.0461
2015	•		•	•	•
0.5056	1.0338	0.7927	0.3488	0.5188	0.4050
2016					
0.4372	2.3368	1.4899	0.4285	0.2729	0.2943
2017					
1.2372	4.2428	4.2478	0.3968	0.0000	0.0970
2018					
-1.1763	-1.4046	-1.2938	0.1239	0.0256	0.0730
2019					
1.7393	2.1135	1.9535	0.5489	0.6122	0.5764
2020					
0.2891	0.7262	0.5049	0.0889	0.0258	0.0480

Predominant performance of two types of DAX-BTC portfolios

Naive diversification? / Estimation error in portfolio optimisation (DeMiguel et al., 2009)

4 Hedging Abilities

Risk averse investors seek to avoid negatively skewed payoffs, and wish to limit risk exposures (Kumar, 2009)

To understand the relation between DAX and BTC returns: regression analysis (Greene, 2018)

$$r_{\mathrm{BTC},t} = \alpha + \beta r_{\mathrm{DAX},t} + \varepsilon_t$$
,

	α	β	R ²
Full sample	0.0045	0.3362	0.0109
2012	0.0047	0.2150	0.0068
2013	0.0171	0.6963	0.0101
2014	-0.0023	-0.0626	0.0006
2015	0.0019	0.1567	0.0070
2016	0.0036	-0.2349	0.0195
2017	0.0111	0.4535	0.0049
2018	-0.0038	0.6822	0.0252
2019	0.0038	-0.3206	0.0046
2020	0.0055	0.7146	0.1417

4 Hedging Abilities

Distinguishing in days with positive/negative signed DAX and BTC returns

2,275 return obs. → DAX: 1,223 (+) and 1,052 (-)

BTC: 1,276 (+) and 999 (-)

Joint occurrence – once unconditioned, once under given sign for DAX return

		DAX+	DAX-	cond. DAX+	cond. DAX-
Full sample	BTC+	0.3081	0.2527	0.5732	0.5466
	BTC-	0.2295	0.2097	0.4268	0.4534
2012	BTC+	0.3110	0.2756	0.5725	0.6034
	BTC-	0.2323	0.1811	0.4275	0.3966
2013	BTC+	0.3715	0.2925	0.6667	0.6607
	BTC-	0.1858	0.1502	0.3333	0.3393
2014	BTC+	0.2262	0.1706	0.4043	0.3874
	BTC-	0.3333	0.2698	0.5957	0.6126
2015	BTC+	0.2964	0.2134	0.5435	0.4696
	BTC-	0.2490	0.2411	0.4565	0.5304
2016	BTC+	0.3294	0.2784	0.6176	0.5966
	BTC-	0.2039	0.1882	0.3824	0.4034
2017	BTC+	0.3571	0.3214	0.6667	0.6923
	BTC-	0.1786	0.1429	0.3333	0.3077
2018	BTC+	0.2470	0.2470	0.5082	0.4806
	BTC-	0.2390	0.2669	0.4918	0.5194
2019	BTC+	0.3108	0.2311	0.5379	0.5472
	BTC-	0.2669	0.1912	0.4621	0.4528
2020	BTC+	0.3228	0.2441	0.6457	0.4882
	BTC-	0.1772	0.2559	0.3543	0.5118

4 Hedging Abilities

Multiple regression analysis

$$r_{\mathrm{BTC},t} = \alpha + \beta_1 r_{\mathrm{DAX},t}^+ + \beta_2 r_{\mathrm{DAX},t}^- + \varepsilon_t.$$

	α	β_1	β_2	R^2
Full sample	0.0063	0.1207	0.5312	0.0131
2012	0.0008	0.6425	-0.2466	0.0198
2013	0.0234	-0.2000	1.6399	0.0178
2014	-0.0029	0.0185	-0.1390	0.0010
2015	0.0026	0.0872	0.2253	0.0076
2016	0.0022	-0.0723	-0.3670	0.0228
2017	0.0086	0.8995	-0.1529	0.0079
2018	-0.0045	0.7822	0.6086	0.0254
2019	0.0037	-0.3026	-0.3380	0.0046
2020	0.0122	0.1686	1.1596	0.1803

5 Conclusion and Outlook

- (+) Diversification potential of Bitcoin
 - ⇒ improved portfolio performances and quantile risk measures of DAX-BTC portfolios
- (–) Hedging capabilities of Bitcoin
 - ⇒ no evidence for Bitcoin as a hedge against stock market downturns

For other periods than reported: no substantially further findings

Researching hedging abilities: consideration of shorter time periods

Structural break in 2020? (pandemic, geopolitical instability)

Time series extension